1 ... 15 16 17 18 19 20 21 22 23

The Poincaré Conjecture Clay Research Conference Resolution of the Poincaré Conjecture Institut Henri Poincaré Paris, France, June 8–9, 2010 - bet 20

bet20/23
Sana08.07.2018
Hajmi3.97 Kb.
Question.
Is there a (quasi)-canonical way of associating statistical ensembles
S to geometric system S of PDE, such that the equations emerge at low temperatures
T and also can be read from the properties of high temperature states of
S by some
“analytic continuation” in T ?
The architectures of liposomes and micelles in an ambient space, say W , which
are composed of “somethings” normal to their surfaces X
⊂ W , are reminiscent of
Thom-Atiyah representation of submanifolds with their normal bundles by generic
maps f

∶ W → V

, where V

is the Thom space of a vector bundle V
0
over some
space X
0
and where manifolds X
= f
−1

(X
0
) ⊂ W come with their normal bundles
induced from the bundle V
0
.
The space of these “generic maps” f

looks as an intermediate between an
individual “deterministic” liposome X and its high temperature randomization.
Can one make this precise?

MANIFOLDS
141
Poincar´
e-Sturtevant Functors. All that the brain knows about the geom-
etry of the space is a flow S
in
of electric impulses delivered to it by our sensory
organs. All what an alien browsing through our mathematical manuscripts would
directly perceive, is a flow of symbols on the paper, say G
out
.
Is there a natural functorial-like transformation
P from sensory inputs to
mathematical outputs, a map between “spaces of flows”
P ∶ S → G such that
P(S
in
)“=”G
out
?
It is not even easy to properly state this problem as we neither know what our
“spaces of flows” are, nor what the meaning of the equality “=” is.
Yet, it is an essentially mathematical problem a solution of which (in a weaker
form) is indicated by Poincar´
e in [58]. Besides, we all witness the solution of this
problem by our brains.
An easier problem of this kind presents itself in the classical genetics.
What can be concluded about the geometry of a genome of an
organism by observing the phenotypes of various representatives
of the same species (with no molecular biology available)?
This problem was solved in 1913, long before the advent of the molecular biology
and discovery of DNA, by 19-year old Alfred Sturtevant (then a student in T.
H. Morgan’s lab) who reconstructed the linear structure on the set of genes on a
chromosome of Drosophila melanogaster from samples of a probability measure on
the space of gene linkages.
Here mathematics is more apparent: the geometry of a space X is represented
by something like a measure on the set of subsets in X; yet, I do not know how to
formulate clear-cut mathematical questions in either case (compare [29], [31]).
Who knows where manifolds are going?
References
1. P. Akhmet’ev, Geometric approach to stable homotopy groups of spheres. The Adams-Hopf
invariants, Fundam. Prikl. Mat., 13:8, pp. 3-15, (2007). MR2475578 (2009m:55010)
2. M. Atiyah, Thom complexes. Proc. London Math. Soc. (3) 11. 291-310. (1961). MR0131880
(24:A1727)
3. M. Atiyah, I. Singer, The Index of Elliptic Operators on Compact Manifolds, Bull. Amer.
Math. Soc. 69: 322-433, (1963). MR0157392 (28:626)
4. D. Barden, Simply connected five manifolds. Ann. Math., 82, 365-385 (1965). MR0184241
(32:1714)

142
MIKHAIL GROMOV
5. M. Bertelson, Topological invariant for discrete group actions. Lett. Math. Phys. 62, 147-156
(2004). MR2104441 (2005m:37057)
6. S. Buoncristiano, C. P. Rourke, B. J. Sanderson, A geometric approach to homology theory.
London Mathematical Society Lecture Note Series, no. 18, Cambridge Univ. Press, (1976)
MR0413113 (54:1234)
7. M. Boyle, Open problems in symbolic dynamics. url http://www-users.math.umd.edu/
mmb/open/, (2008). MR2478466 (2010h:37023)
8. W. Browder, Homotopy type of differentiable manifolds, Colloq. Algebraic Topology, pp. 42-
46, Aarhus University, (1962). reprinted in “Novikov conjectures, index theorems and rigidity,
Vol. 1 (Oberwolfach, 1993)”, 97-100, LMS Lecture Notes 226 (1995) MR1388298 (97d:57044)
9. E. Brown Jr., The Kervaire invariant and surgery theory.
www.math.rochester.edu/u/faculty/doug/otherpapers/brown2.pdf
10. J. Cheeger, Spectral geometry of singular Riemannian spaces, J. Differential Geom. V. 18. 4.
pp. 575-657, (1983). MR730920 (85d:58083)
11. J. Cheeger and M. Gromov, On the characteristic numbers of complete manifolds of bounded
curvature and finite volume, Differential geometry and complex analysis, H. E. Rauch Memo-
rial Volume, Springer-Verlag, Berlin, (1985). MR780040 (86h:58131)
12. A. Chernavskii, Local contractibility of the group of homeomorphisms of a manifold, Math.
USSR Sb. , 8 : 3 pp. 287-333, (1969),
13. M. Davis, Poincar´
e duality groups, from: “Surveys on surgery theory, Vol. 1”, Ann. of Math.
Stud. 145, Princeton Univ. Press, Princeton, NJ, 167-193, (2000). MR1747535 (2001b:57001)
14. M. Davis, The Geometry and Topology of Coxeter Groups,. London Mathematical Society
Monographs, Princeton University Press, (2008). MR2360474 (2008k:20091)
15. S. Donaldson, An Application of Gauge Theory to Four Dimensional Topology, Journal of
Differential Geometry 18 (2): 279-315, (1983). MR710056 (85c:57015)
16. P. Eccles, Multiple points of codimension one immersions of oriented manifolds. Math. Proc.
Cambridge Philos. Soc. 87, 213-220 (1980). MR553578 (81j:55014)
17. P. Eccles, Codimension one immersions and the Kervaire invariant one problem, Math. Proc.
Camb. Phil. Soc. 90, 483-493 (1981). MR628831 (83c:57015)
18. S. Eilenberg, Cohomology and continuous mappings, Ann. of Math., 41, 231-251, (1940).
MR0001351 (1:222b)
19. Y. Felix, S. Halperin, J.-C. Thomas, Rational homotopy theory, Springer, (2001). MR1802847
(2002d:55014)
20. D. Fried, Finitely presented dynamical systems. Ergodic Theory and Dynamical Systems, 7,
pp 489-507, (1987). MR922362 (89h:58157)
21. D. Fuks, Classical Manifolds. In Topology-1. Sovr. Probl. Math. Fund. Napr. (Itogi. Nauki-
Tech.), M., VINITI, (1986). MR895593 (88j:57002)
22. M. Furuta, Homology cobordism group of homology 3-spheres, Invent. Math. 100, 339-355,
(1990). MR1047138 (91c:57039)
23. A. Gaifullin, The construction of combinatorial manifolds with prescribed sets of links of
vertices, Izvestiya RAN: Ser. Mat. 72:5, 3-62, (2008). MR2473771 (2010d:51036)
24. A. Gaifullin, Configuration spaces, bistellar moves, and combinatorial formulae for the first
Pontryagin class, Tr. Mat. Inst. Steklova, Volume 268, pp. 76-93, (2010).
MR2724336
(2011k:57032)
25. M. Gromov, On the number of simplices of subdivisions of finite complexes, Mat. Zametki,
3:5, pp. 511-522, (1968). MR0227971 (37:3555)
26. M. Gromov, Hyperbolic manifolds, groups and actions, Ann. Math. Studies 97, 183-215,
Princeton University Press, Princeton, (1981). MR624814 (82m:53035)
27. M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signa-
tures, Functional analysis on the eve of the 21st century, Vol. II , 1-213, Progr. Math., 132,
Birkh´’auser, (1996). MR1389019 (98d:53052)
28. M. Gromov. Spaces and questions, Geom. Funct. Anal., Special Volume, Part I:118-161,
(2000). MR1826251 (2002e:53056)
29. M. Gromov, Mendelian Dynamics and Sturtevant’s Paradigm, in “Geometric and Probabilis-
tic Structures”, Contemporary Mathematics Series v. 469, (ed, Keith Burns,, Dmitry Dolgo-
pyat and Yakov Pesin), pp 227-242, American Mathematical Society, Providence RI (2007).
MR2478473 (2009k:92066)

MANIFOLDS
143
30. M. Gromov, Crystals, Proteins, Stability and Isoperimetry. Submitted to Bulletin of AMS,
(2010).
http://www.ihes.fr/˜gromov/PDF/pansu-crystals-isoper.pdf MR2774091 (2012a:92196)
31. M. Gromov, Structures, Learning and Ergosystems.
www.ihes.fr/˜gromov/PDF/ergobrain.pdf
32. R. Hamilton Three-manifolds with positive Ricci curvature. J. Differential Geom. Volume 17,
Number 2, 255-306, (1982). MR664497 (84a:53050)
33. A. Haefliger, Plongements differentiables de vari´
et´
es dans vari´
et´
es, Comment. Math. Helv. 36,
47-82, (1961). MR0145538 (26:3069)
34. A. Haefliger, Knotted (4k-1)-spheres in 6k-space. Ann. of Math. (2) 75, 452-466, (1962).
MR0145539 (26:3070)
35. B. Hasselblatt, Hyperbolic dynamical systems. Handbook of Dynamical Systems 1A, 239-319,
Elsevier North Holland, (2002). MR1928520 (2004b:37047)
36. H. Hopf, Abbildungsklassen n-dimensionaler Mannigfaltigkeiten. Math. Annalen 96, pp. 225-
250, (1926).
37. M.Hill, M. Hopkins, D.Ravenel. On the non-existence of elements of Kervaire invariant one.
www.math.rochester.edu/u/faculty/doug/kervaire

082609.pdf
38. W. Hurewicz, Beitr´’ age zur Topologie der Deformationen I-II. Proc. Ned. Akad. Weten. Ser.
A , 38, pp. 112-119; 521-528, (1935).
39. M. Kervaire, J. Milnor, Groups of homotopy spheres. I Ann. of Math., 77:3, pp. 504-537
(1963). MR0148075 (26:5584)
40. R. Kirby, L. Siebenmann, Foundational Essays on Topological Manifolds, Smoothings and
Triangulations, Ann. of Math. Studies 88 (1977). MR0645390 (58:31082)
41. M. Kreck, Differential Algebraic Topology, Graduate Studies in Mathematics, Volume 110,
(2010). MR2641092 (2011i:55001)
42. N. Levitt, C. Rourke, The existence of combinatorial formulae for characteristic classes, Trans.
Amer. Math. Soc. 239, 391-397, (1978). MR0494134 (58:13063)
43. D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge Uni-
versity Press, (1995). MR1369092 (97a:58050)
44. N. Martin, On the difference between homology and piecewise-linear bundles, J. London Math.
Soc. (2), 6:2, 197-204, (1973). MR0314061 (47:2613)
45. W. Massey. Proof of a conjecture of Whitney. Pacific J. Math. Volume 31, Number 1 (1969),
143-156. MR0250331 (40:3570)
46. B. Mazur, Stable equivalence of differentiable manifolds, Bull. Amer. Math. Soc. 67, 377-384,
(1961). MR0130697 (24:A557)
47. B. Mazur, Bernoulli numbers and the unity of mathematics.
www.math.wisc.edu/˜boston/Bernoulli.pdf
48. J. Milnor, On manifolds homeomorphic to the 7-sphere, Ann. of Math. (2) 64 (1956) 399-405,
(1956). MR0082103 (18:498d)
49. J. Milnor, Two complexes which are homeomorphic but combinatorially distinct, Annals of
Mathematics 74 (2): 575-590 (1961). MR0133127 (24:A2961)
50. J. Milnor and J. Stasheff, Characteristic classes,. Princeton. Univ. Press (1974). MR0440554
(55:13428)
51. A. Mishchenko, Infinite-dimensional representations of discrete groups, and higher signatures,
Math. USSR-Izv., 8:1, 85-111, (1974). MR0362407 (50:14848)
52. A. Nabutovsky, Combinatorics of the space of Riemannian structures and logic phenomena of
Euclidean Quantum Gravity, in “Perspectives in Riemannian Geometry”, ed. by V. Apostolov
et al., CRM Proceedings and Lecture Notes, vol. 40, 223-248, AMS, Providence, RI, (2006).
MR2237112 (2007h:53056)
53. A. Nabutovsky, S. Weinberger, The fractal geometry of Riem/Diff, Geometriae Dedicata 101,
1-54, (2003). MR2017894 (2005d:53063)
54. S. Novikov, Homotopy equivalent smooth manifolds I. (In Russian). Izv. Akad. Nauk S.S.S.R.
ser. mat. 28 (2) (1964),365-474.Also, Translations Amer. Math. Soc. 48, 271-396, (1965).
MR0162246 (28:5445)
55. S. Novikov, On manifolds with free Abelian fundamental group and their application, Izv.
Akad. Nauk SSSR, v. 30, N 1, 207-246, (1966). MR0196765 (33:4951)
56. G. Perelman, Ricci flow with surgery on three-manifolds.
arXiv:math.DG/0303109, (2003).

144
MIKHAIL GROMOV
57. S. Podkorytov, An alternative proof of a weak form of Serre’s theorem, J. of Math. Sci. vol
110, No.4 2875-2881, (2002). MR1758429 (2001d:55009)
58. H. Poincar´
e, Science and hypothesis, London and Newcastle-on-Tyne: The Walter Scott Pub-
lishing Co., (1905).
59. L. Pontryagin, Classification of continuous transformations of a complex into a sphere, Dokl.
Akad. Nauk SSSR , 19, pp. 361-363, (In Russian) (1938).
60. L. Pontryagin, Homotopy classification of the mappings of an
(n+2)-dimensional sphere on an
n-dimensional one, Dokl. Akad. Nauk SSSR (N.S.) 70, 957-959, (Russian) (1950). MR0042121
(13:57b)
61. A. Ranicki, M. Weiss, On the construction and topological invariance of the Pontryagin classes
arXiv:0901.0819, (2009). MR2721630 (2011j:57040)
62. V. Rokhlin, Summary of results in homotopy theory of continuous transformations of a sphere
into a sphere, Uspekhi Mat. Nauk, 5:6(40), 88-101, (1950). MR0039250 (12:519h)
63. V. Rokhlin, New results in the theory of 4-dimensional manifolds, Dokl. Akad. Nauk. SSSR
84, 221-224, (Russian) (1952). MR0052101 (14:573b)
64. V. Rokhlin, On Pontrjagin characteristic classes, Dokl. Akad. Nauk SSSR 113, 276-279, (1957).
MR0094806 (20:1318)
65. V. Rokhlin, A. Schwarz, The combinatorial invariance of Pontryagin classes, Dokl. Akad Nauk
SSSR, 114, 490-493, (1957). MR0102070 (21:865)
66. C. Rourke, Essay on the Poincar´
e conjecture,
http://msp.warwick.ac.uk/˜cpr/.
67. A. Russon, Orangutans: Wizards of the Rain Forest, Key Porter books, (2004).
68. J-P. Serre, Homologie singuli`
ere des espaces fibr´
es. Applications, Annals of Mathematics, 54
(3): 425-505, (1951). MR0045386 (13:574g)
69. J. Simons, Minimal varieties in riemannian manifolds, Ann. Math. 88, 62-105, (1968).
MR0233295 (38:1617)
70. S. Smale, Generalized Poincar´
e’s conjecture in dimensions greater than four. Ann. of Math.
(2) 74,1961 391-406, (1961). MR0137124 (25:580)
71. S. Smale: On the structure of 5-manifolds. Ann. Math., 75, 38-46, (1962).
MR0141133
(25:4544)
72. J. Stallings, Polyhedral homotopy-spheres, Bull. Amer. Math. Soc. Volume 66, Number 6,
485-488, (1960). MR0124905 (23:A2214)
73. D. Sullivan, Hyperbolic geometry and homeomorphisms, Geometric Topology., Proc. Georgia
Topology Conf., Athens, Ga., Academic Press, New York, pp. 543-555, (1977). MR537749
(81m:57012)
74. A. Sz`
ucs, Cobordism of singular maps, Geometry and Topology 12, 2379-2452 (2008).
MR2443969 (2009g:57044)
75. R. Thom, Quelques propri´
et´
es globales des vari´
et´
es diff´
erentiables, Commentarii Mathematici
Helvetici 28: 17-86, (1954). MR0061823 (15:890a)
76. R. Thom, Les classes caract´
eristiques de Pontrjagin des vari´
et´
es triangul´
ees,Topologia Alge-
braica, Mexico, 54-67, (1958). MR0102071 (21:866)
77. W. Thurston, The geometry and topology of 3-manifolds, Princeton lecture notes (1978-1981).
78. C. T. C. Wall, Surgery on compact manifolds, Mathematical Surveys and Monographs, 69 (2nd
ed.), Providence, R.I.: American Mathematical Society, (1999). MR1687388 (2000a:57089)
79. H. Whitney, On the topology of differentiable manifolds, from: “Lectures in Topology”, Uni-
versity of Michigan Press,101-141, (1941). MR0005300 (3:133a)
80. H. Whitney, The self-intersection of a smooth n-manifold in 2n-space, Ann. of Math. 45,
220-246, (1944). MR0010274 (5:273g)
81. E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (6): 769-796,(1994). MR1306021
(96d:57035)
82. E. Zeeman, Unknotting combinatorial balls. Ann. of Math. (2) 78, 501–526, (1963).
MR0160218 (28:3432)
IHES, Bures-sur-Yvette, France

Clay Mathematics Proceedings
Volume 19, 2014
Geometric Analysis on 4-Manifolds
Gang Tian
Abstract.
In this expository paper, we will discuss some geometric analytic
approaches to studying the topology and geometry of 4-manifolds. We will
start with a brief summary on 2-manifolds and then recall some aspects of
Perelman’s resolution of the Geometrization conjecture for 3-manifolds by us-
ing Hamilton’s Ricci flow. Then we discuss geometric approaches and progress
on studying 4-manifolds. For simplicity, we assume that all manifolds in this
paper are closed and oriented.
1. Geometrization of 2-manifolds
Let M be a 2-dimensional manifold. Any Riemannian metric g on M gives
rise to a conformal structure and makes M into a Riemann surface. It then follows
from complex analysis that the universal covering of M is conformal to either S
2
or
R
2
or the hyperbolic disc D. In particular, the topology of M is determined by
its fundamental group. Moreover, since each of the standard spaces above has a
canonical metric with constant curvature, we can conclude that there is a metric
˜
g with constant curvature and conformal to g. In fact, such a ˜
g is unique if the
volume is normalized.
Another approach to studying 2-manifolds is to construct metrics with constant
curvature by solving partial differential equations. This is more analytic and opens
the possibility of generalization to higher dimensions. Given a Riemannian metric
g on M , consider a new metric ˜
g = e
ϕ
g for some smooth function. A simple
computation shows that ˜
g has constant curvature μ if and only if
(1.1)
−Δϕ + K(g) = μe
ϕ
,
where K(g) denotes the curvature of g and Δ is the Laplacian operator of g. This
equation has been studied a lot: see Chapter 6 of [Au] for a detailed discussion.
Here we give a summary for the readers’ convenience. If μ = 0, it is a linear
equation and has a solution by the standard theory. If μ < 0, by the Maximum
Principle, there is a uniform L

-bound on ϕ. Standard elliptic theory can then be
used to derive a prior bounds on all the derivatives on any solutions of the above
equation; consequently, one can establish existence. When μ > 0, the problem
is more tricky and is often referred as the Nirenberg problem. Many prominent
mathematicians, including Nirenberg, Kazdan–Warner, Aubin et al. studied this
problem. It has been shown that (1.1) always has a solution (see Section 4 of
Supported partially by NSF grant DMS-0804095.
c 2014 Gang Tian
145

146
GANG TIAN
Chapter 6 in [Au]). Therefore, given any g, there is a metric ˜
g conformal to g and
with constant curvature. A classical uniformization theorem in differential geometry
(cf. Chapter 8, [DoC]) then implies that modulo scaling, the universal covering
of M with the induced metric from ˜
g is isometric to S
2
or
R
2
or the hyperbolic
disc D with the standard metric. The advantage of this approach is that one gets
a full understanding of geometry and topology of 2-manifolds by solving a partial
differential equation.
A more recent method of finding metrics with constant curvature is to use the
Ricci flow introduced by R. Hamilton [Ha82]:
(1.2)
∂g
∂t
=
−2Ric(g), g(0) = g
0
.
In [Ha88], [Ch90], it was proven that given any initial g
0
, (1.2) has a global solution
g(t) after normalization and g(t) converges to a metric g

on M . One can show
that g

is of constant curvature. The proof is trivial if the Euler number of M is
non-positive and is contained in [CLT06] if M has positive Euler number. Thus
the Ricci flow gives rise to another approach to geometrizing 2-manifolds.
2. Geometrization of 3-manifolds
Can one extend what we said about surfaces to higher dimensions? First we
need to introduce the notion of Einstein metrics.
Definition
2.1. g is Einstein if Ric(g) = λg, where λ =
−(n − 1), 0, n − 1.
Note that Ric(g) = (R
ij
) denotes the Ricci curvature of g. It measures the
deviation of volume form from the Euclidean one. In dimension 2, an Einstein
metric is simply a metric with constant Gauss curvature.
Now assume that M is a compact 3-manifold. In this case, an Einstein met-
ric has constant sectional curvature, and the classical uniformization theorem in
differential geometry (cf. Chapter 8, [DoC]) then states that if M admits an Ein-
stein metric, then its universal covering is of the form S
3
/Γ,
R
3
/Γ or
H
3
/Γ, where
Γ
π
1
(M ) and
H
3
denotes the hyperbolic space of dimension 3. Thus, if we can
always construct an Einstein metric, then we have a similar picture for 3-manifolds
as we have for surfaces. However, not every 3-manifold admits an Einstein metric.
One can easily construct such examples, such as Σ
× S
1
for any surface Σ of genus
greater than 1. This is because its fundamental group is the product of a surface
group with
Z which is neither an abelian group nor the fundamental group of any
hyperbolic compact 3-manifold (cf. [Th97]).
It was known [Kn29] that any closed 3-manifold can be decomposed along
embedded 2-spheres into irreducible 3-manifolds; moreover, such a decomposition
is essentially unique. Thurston’s Geometrization Conjecture claims (cf. [Th97],
[CHK00]) that any irreducible 3-manifold can be decomposed along incompressible
tori into finitely many complete Einstein 3-manifolds plus some Graph manifolds.
The famous Poincare conjecture is a special case of this Geometrization Conjecture.
This conjecture has been solved by Perelman (cf. [Per02], [Per03]) using the
Ricci flow introduced by R. Hamilton in early 80’s:
(2.1)
∂g
ij
∂t
=
−2R
ij
,
g(0) = a given metric.

GEOMETRIC ANALYSIS ON 4-MANIFOLDS
147
R. Hamilton and later DeTurck proved that for any initial metric, there is a unique
solution g(t) on M
×[0, T ) for some T > 0. R. Hamilton also established an analytic
theory for Ricci flow.
If the Ricci flow has a solution g(t), then we can choose a scaling λ(t) > 0 and a
reparametrization t = t(s) with λ(0)
− 1 and t(0) = 0 such that ˜g(x) = λ(s)g(t(s))
has fixed volume and satisfies the normalized Ricci flow:
(2.2)
∂g
ij
∂t
=
−2 R
ij
− R(t)g
ij
.
If the normalized Ricci flow (2.2) has a global solution ˜
g(s) for all s
≥ 0 and ˜g(s)
converges to a smooth metric g

as s goes to
∞, then its limiting metric g

is an
Einstein metric, so the universal covering of M is standard. The Geometrization
Conjecture follows.
The first successful case was done by R. Hamilton in 1982: If M has a metric of
positive Ricci curvature, then the normalized Ricci flow has a global solution which
converges smoothly to a metric of constant positive curvature, consequently, M is
a quotient of S
3
by a finite group.
However, in general, the Ricci flow develops a singularity at finite time. The


Do'stlaringiz bilan baham:

©2018 Учебные документы
Рады что Вы стали частью нашего образовательного сообщества.
?


the-secretariat-of.html

the-self-sacrificing.html

the-separation-of-powers.html

the-series-of-the-101.html

the-series-of-the-106.html